
Two twistor descriptions of the isomonodromy problem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 4087

(http://iopscience.iop.org/0305-4470/39/15/013)

Download details:

IP Address: 171.66.16.101

The article was downloaded on 03/06/2010 at 04:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 4087–4093 doi:10.1088/0305-4470/39/15/013

Two twistor descriptions of the isomonodromy
problem

N M J Woodhouse

The Mathematical Institute, 24-29 St Giles’, Oxford OX1 3LB, UK

Received 3 January 2006, in final form 21 February 2006
Published 29 March 2006
Online at stacks.iop.org/JPhysA/39/4087

Abstract
The connections between Hitchin and Mason’s twistor descriptions of the
isomonodromy problem are explored.
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1. Introduction

Twistor theory was first explored by Penrose in his investigation of the role of holomorphicity
and conformal symmetry in relativistic quantum field theory. The primary aim, to find a new
route to the quantization of gravity, has yet to be fully achieved; but through the work of Ward,
Hitchin, Mason and others, the underlying geometry has provided a unifying framework for
the study of integrable systems (see [4] for a review). It sheds light on the connections between

• integrable systems of partial differential equations;
• real and complex geometries with symmetry; and
• isomonodromic families of ordinary differential equations.

In this paper, I shall concentrate on the third of these, and will explain the connections between
two different twistor representations of isomonodromy, due, respectively, to Hitchin and
Mason. The former construction links isomonodromy to problems in differential geometry;
the latter gives a tool for the systematic study of the way in which the isomonodromic
deformation equations arise from the dimensional reduction of integrable systems. The route
from the first construction to the second has not appeared elsewhere.

2. Conformal reductions of the self-dual Yang–Mills equations

Ward showed [6] that there is a correspondence between, on the one hand, anti-self-dual
solutions to the Yang–Mills equations on a suitable region of complex space time and, on the
other, holomorphic vector bundles over a corresponding subset U ⊂ CP3 (complex projective
3-space). The Yang–Mills field is a connection D on a trivial bundle and the anti-self-duality
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condition is that its curvature should vanish on a special three-dimensional family of null
2-planes (α-planes). The set of α-planes is the twistor space of complex space-time—it is
identified with a subset of CP3, in a way that is natural in the sense that the action of the proper
conformal group in space-time corresponds to the action of the isomorphic group PGL(4, C)

on CP3. Ward’s construction maps D to the vector bundle E → U whose fibres are the spaces
of solutions to the linear equations Ds = 0 over the α-planes. The remarkable and non-trivial
fact is that the construction is reversible: D can be uniquely recovered from E, with no other
data required—a beautiful example of Penrose’s idea that relativistic field equations should
reduce to holomorphicity conditions in twistor space.

The anti-self-duality condition is preserved by proper conformal transformation, and so
it makes sense to look for solutions that are invariant under subgroups of the conformal
group. The twistor construction then gives a correspondence between conformal reductions
of the anti-self-duality condition and equivariant vector bundles on twistor space—that is,
holomorphic bundles that are unchanged by the action of the corresponding subgroup of
PGL(4, C). If the subgroup is m-dimensional and acts freely on an open subset of CP3, then
the reduced system has (4 − m) independent variables. The one-dimensional examples give
various monopole equations and the two-dimensional ones lead to a variety of familiar and
widely studied integrable systems—the KdV equation, the nonlinear Schrödinger equation,
the Ernst equation and many others. The three-dimensional ones give systems of ODEs
with the Painlevé property. One thus sees in the twistor geometry a very direct connection
between integrability of systems of partial differential equations and the Painlevé property of
the systems of ODEs derived from them by dimensional reduction.

The Yang–Mills twistor construction encompasses only one special class of integrable
systems. But the general ideas extend to include others—whether or not they can be taken
far enough to include all integrable systems is an open question, and one that is unlikely to
be answered so long as ‘integrability’ and ‘twistor’ retain their current elasticity of meaning.
Whatever form the extension takes, however, one expects to see systems of ODEs with the
Painlevé property at the foot of any chain of dimensional reductions. One reason for this is
the connection between the Painlevé property and isomonodromy, and the existence of a very
general geometric construction for isomonodromic families of ODEs.

3. Equivariant bundles and isomonodromy

Suppose that we are given

• a complex manifold Z and a complex Lie algebra g of the same dimension that acts on
Z , with the action being free on the complement of a hypersurface � ⊂ Z;

• a g-equivariant holomorphic principal bundle P → Z with a structure group Ĝ;
• an embedded copy X ⊂ Z of CP1 which intersects � transversally, and which has the

properties that P |X is trivial and that

H 0(N,X) �= 0, H 1(N,X) = 0,

where N is the normal bundle of X in Z . An action of g on Z is a Lie algebra
homomorphism into the holomorphic vector fields on Z; the action is free at a point
z if corresponding map g → TzZ is injective, and therefore, on dimensional grounds, an
isomorphism. Each element of g determines a holomorphic vector field Y on Z . When P
is equivariant, then these vector fields in turn lift to vector fields on P that are preserved
by the action of Ĝ. In a local trivialization, the lift is given by a linear map Y �→ θY ,
where θY is a function on Z with values in the Lie algebra ĝ, with the property

Y (θY ′) + Y ′(θY ) + [θY , θY ′ ] = 0
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for every pair of generators Y, Y ′ of the g action. Under gauge transformations of the
local trivialization, θY �→ h−1θY h + h−1Y (h), where h takes values in Ĝ.

By Kodaira’s theorem [3], X is one of the family of curves Xm ⊂ Z that intersect �

transversally, labelled by a parameter space M of dimension H 0(X,N); for almost every
m ∈ M , the restricted bundle P |Xm

is trivial—although this does not imply that P itself is
trivial. The jumping lines are the isolated members of the family for which P |Xm

is nontrivial.
Given these, we construct an isomonodromic family of ODEs as follows. First, we

note that the action of g on P determines a flat P-connection D on the complement of �,
characterized by DY = d + θY for each generator Y. Next, P and the connection are pulled
back to the correspondence space C. This is the space whose points are pairs (z,Xm), with
Xm one of the family of curves and z ∈ Xm. If we exclude the jumping lines from M, then the
pull-back of P is the trivial bundle, and the pull-back of the connection is flat and meromorphic:
it is singular where z ∈ �.

The correspondence space is fibred over Z by (z,Xm) �→ z, and over M by (z,Xm) �→ m;
the fibres of the second fibration are the curves (z,Xm), with m fixed, which are all copies
of CP1. In the global trivialization of the pulled-back bundle over C, the restriction of the
connection to one of these fibres is of the form

d − A(ζ ) dζ,

where ζ is a stereographic coordinate and A is a rational function on CP1 with values in ĝ—the
Lie algebra of Ĝ. It has poles at the points where Xm meets �. Thus we have a family of
linear ODEs, labelled by points of M

dy

dζ
= Ay.

Here y takes values in a representation space of Ĝ. The ODEs are uniquely determined by the
data up to conjugation of A by a holomorphic map h : M → Ĝ.

If the coordinate is chosen so that ζ = ∞ is not an intersection point with �, then A has
a zero of order 2 at infinity. A pole of order r + 1 in A is a singularity of rank r in the linear
system.

The solutions to the ODE are parallel sections of the associated vector bundle over the lines
Xm—although these exist only locally and are not single-valued in the large. Isomonodromy
follows more or less directly from the fact that D is the restriction of a flat meromorphic
connection. If all the poles of A are simple, then ‘isomonodromic’ means no more than that
the monodromy representation is constant up to conjugacy as m varies; if there are poles of
higher order, then it involves in addition the preservation of other data associated with the
ODEs. In either case, the monodromy representation coincides with the holonomy of the flat
connection on P.

The archetypical example is the sixth Painlevé equation [5]. This we obtain by taking Z
to be a neighbourhood of a line in CP3 and g to be the diagonal subalgebra of the Lie algebra
of the projective general linear group PGL(4, C). The solutions to PV I correspond to the
equivariant SL(2, C)-bundles over Z .

4. Local form of the connection

In a local trivialization of P,

D = d − α, (1)
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where α is a meromorphic 1-form on Z with values in the ĝ. It is nonsingular on the
complement of � and satisfies the flatness condition

dα − [α, α] = 0.

Its restriction to a curve Xm is gauge-equivalent to A dζ .
We shall make two ‘genericity’ assumptions. The first is that there is an Abelian subalgebra

t ⊂ ĝ such that the leading coefficient in A is conjugate to an element of ĝ at each pole. When
Ĝ is the general linear group and t is the diagonal subalgebra, this is a consequence of the
standard genericity assumption that the eigenvalues of the leading coefficients are distinct.
The second assumption is that there is a curve in the family through every point of Z .

Let a ∈ � ∩ X. By the second assumption, we can identify a neighbourhood of a in
Z with a neighbourhood of (a, 0) in � × C the curves ζ �→ (z, ζ ), with z fixed, are parts
of curves in the family. Suppose that A has a pole of order r + 1 at a. Then, by the first
assumption and the flatness condition,

hαh−1 = a dζ + ζβ

ζ r+1
+ γ,

where h takes values in Ĝ and is holomorphic, a takes values in t, β and γ are holomorphic at
ζ = 0, β has no dζ component, and

dza = −rβ + O(ζ r+1),

where dz denotes the exterior derivative with ζ held fixed. By expanding a in powers of ζ , we
deduce that

hαh−1 = dτ + m d log ζ + γ ′, (2)

where τ = p/ζ r, p a t-valued polynomial in ζ,m is a constant element of t and γ ′ is
holomorphic at ζ = 0. The constant m is the ‘exponent of formal monodromy’, and the
restriction of τ + m log ζ to one of the curves of the family is the diagonal exponent in the
formal solution of the linear system in [2].

If Y is one of the generators of the action of g, then iY α is constant and Y (ζ ) = 0 on �.
So, despite the fact that τ blows up as ζ−r , its derivative Y (τ) is holomorphic at ζ = 0.

5. Two constructions

In general, the information contained in the linear system of ODEs and its deformations is
contained in the action of g on both the base space Z and the bundle P. At the extremes are
two special constructions.

5.1. First construction

In the first, due to Hitchin [1], P is trivial and all the data are encoded in the geometry of Z
and g. Hitchin’s construction has been exploited to generate interesting geometries by using
Penrose’s nonlinear graviton construction, and its variants. With g = sl(2, C), for example, Z
is the twistor space of a four-dimensional complex Riemannian manifold with anti-self-dual
conformal structure and SL(2, C) symmetry (a ‘Bianchi IX’ geometry). It is shown in [7]
that if g is the Lie algebra of the general linear group and if A satisfies the standard condition
that its leading coefficients at its irregular singularities have distinct eigenvalues, then the
corresponding isomonodromic family can be obtained from such a twistor space.
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5.2. Second construction

At the other extreme, Z is a standard space that carries only information about the number
of singularities in the linear system and their ranks. The particular isomonodromic family is
encoded in the bundle P → Z . Such a standard twistor space can be constructed as follows.
Let t be an Abelian subalgebra of ĝ—we shall keep in mind the main example in which t

is the Lie algebra of the diagonal subgroup of the complex general linear group. Let r be a
nonnegative integer. If r = 0, let Hr denote the Abelian group C

∗ (the multiplicative group
of complex numbers ); if r > 0, let Hr = C

∗ × t, with the group law

(λ, t) · (λ′, t ′) = (λλ′, λr t ′ + λ′r t).

For r > 0, this acts linearly on the vector space Vr = C ⊕ t by

(Z,W) ∈ C ⊕ t �→ (λZ, λrW + tZr).

For r = 0, we take V0 = C.
Denote by H the quotient group

(
Hr0 × · · · × Hrn

)/
C

∗. The standard twistor space ZS

associated with H is constructed from the linear action of the Hrs on

V = Vr0 ⊕ · · · ⊕ Vrn
,

where the ris are the ranks of the singularities of the linear system. By picking out the Zs in
each summand, we have a projection π : V → C

n+1. We define ZS to be the quotient of

V\π−1(0)

by the action of C
∗, and take G = H .

As a complex manifold, ZS is the total space of copies of the line bundles O(ri) over CPn,
with the projection onto CPn given by π ; in the Fuchsian case, in which all the ranks are zero,
ZS = CPn. The action of the Hrs on the Vrs gives an action of H on ZS which is transitive
and free on the complement of

� =
⋃

π−1(
i)/C
∗,

where the 
is are the coordinate hyperplanes in C
n+1, and the curves Xm are the sections of

ZS over lines in CPn.
Consider the form of α in a neighbourhood of a point on 
i . If ri > 0, then the generators

of the H-action are nonzero in the neighbourhood, except for those in the Lie algebra of
the t factor of Hri

. Denote by Zi,Wi the corresponding homogeneous coordinates on ZS .
By choosing the local trivialization of P to be invariant along the non-vanishing generators,
we can ensure that τ in depends only on Zi,Wi . Moreover, since it is constant along the
non-vanishing generator of Hri

, it depends on these variables only through the combinations
Wi

/
Zr

i . Consequently τ = p
/
Zr

i , where p is a linear function of Wi . By constant linear
transformation of the variables Wi , therefore, we can ensure that τ = Wi

/
Zr

i . This relates the
coordinates homogeneous W,Z on ZS to the deformation parameters in [2].

It is shown in [7] that if Ĝ is the general linear group and if A satisfies the standard
condition that its leading coefficients at its irregular singularities have distinct eigenvalues,
then the corresponding isomonodromic family can be obtained from an equivariant bundle
P → ZS , at least locally, that is, by restricting ZS to an open neighbourhood of one of the
curves Xm. The ranks of the singularities are the integers ri .

The second twistor construction allows one to see, in a systematic way, how the
different isomonodromic deformation equations fit into the hierarchies associated with standard
integrable systems. In the archetypical example, n = 3 and all the ranks are zero, soZS = CP3.
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6. From the second construction to the first

Suppose that we are given P → Z as in the first construction. The passage from the second
construction to the first is the ‘switch map’ in [4], which interchanges the roles of g and ĝ.
The total space of the principal bundle P → Z carries actions of the ĝ (the Lie algebra of its
structure group) and g (since it is equivariant). The two actions commute and their orbits are
transverse except over �. The curves in Z lift to P by the triviality condition. If we take a
neighbourhood of such a lifted curve, and quotient by the action ĝ, then we obtain the twistor
space of the second construction; the projections from P of the lifts of the curves in Z are the
twistor curves in the new twistor space.

7. From the first construction to the second

To go in the other direction, we start with Z and the g-action of the first construction, with P
is trivial. Then D is globally of the form (1).

The hypersurface � is made up of a number of connected components, each intersecting
a twistor curve X at one of the singularities of the linear system. Let us concentrate for
the moment on one component S on which ζ = 0. We shall construct an equivariant bundle
Br → Z from S and an action of g on Br that together encode the position of the corresponding
pole of A along with information about the singular part of A. First, we define Lr to be the
line bundle with −S. This is equivariant because S is invariant. It has fibre coordinate z away
from S, and fibre coordinate z′ in a neighbourhood of S, with the transition rule

z′ = z/ζ

and a g-invariant section over the complement of S given by z = 1. This section determines
the action g on the whole of Br since Y (ζ )/ζ is nonsingular on S.

When r > 0, we also introduce an equivariant affine bundle Tr → Z with fibre t and
transition rule

w = w′ − τ,

where w,w′ ∈ t are fibre coordinates. The action of g is determined away from S by the
condition that z and w should be invariant. It extends holomorphically over S since if Y is one
of the generating vector fields of the action of g on Z , then

Y (ζ )

ζ
and Y (τ)

are nonsingular at ζ → 0.
In both cases, the action of g on Lr and on Tr commutes with the natural action of Hr

given by

z �→ λz, w �→ w + t.

We construct such a line bundle Lri
for each component of �, and affine bundle T → Z

by taking the product of the Trs for each component of � for which r > 0. We use a subscript
i to denote the quantities associated with the ith component of �. Put

P = T × (
Lr0 ⊕ · · · ⊕ Lrn

)/
C

∗,

where C
∗ acts by zi �→ λzi . The fibres of P are products of CPn, with homogeneous

coordinates zi , with n + 1 copies of the affine space modelled on t. We can lift a
twistor curve X ⊂ Z to P by choosing a stereographic coordinate λ on X, and putting
zi : zj = (λ − λi) : (λ − λj ), where the points λ = λi are the intersection points of X with
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�; and by picking out the unique section of T |X for which wi − τi is holomorphic at the
intersection with Si .

We then commuting actions of g and H on P. We also have a projection P → ZS given
by

(zi, wi) �→ (Zi,Wi) = (
zi, z

r
i wi

)
,

which extends holomorphically to the fibres of P over � since z = ζz′ and zrw = z′r ζ r (w′−τ)

are holomorphic at ζ = 0. Moreover, if we lift a twistor curve to P and then project it into ZS ,
then we obtain one of the twistor curves in ZS .

The quotient P = B/C
∗ by the subgroup C

∗ ⊂ H is part of the total space of a principal
bundle with a structure group H/C

∗ over a neighbourhood U of a twistor curves in the standard
twistor space. From it, we recover the whole of P over U, and thus the second description of
the isomonodromic family.
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